KUPE for Parallel System

이철 박소은

Index

- Why Parallel Computing?
- Challenges of Parallel Computing
- Solutions
- Applying to KUPE
- Q&A

Why Parallel Computing?

➢ Parallel Computing

- A type of computation in which many calculations or the execution of processes are carried out simultaneously
- Larger problems can often be divided into smaller ones

➤Why parallel computing?

- Due to the physical constraints preventing frequency scaling
- Hard to improve performance above the power wall

Using parallel computing

- Climate modelling
- Drug discovery
- Data analysis

Challenges of Parallel Computing

>Synchronization

More than two threads read or write the shared resource at the same time

➤Communication

- More than two processes or threads use to share the data that are not in the same memory space of each process or thread
- For collaboration
- Message Passing Interface(MPI)

Load balancing

- Important that each thread computes the balanced amount of tasks
- For performance

Solutions

➤Synchronization

- Atomic execution
- Lock

Communication

- Pipe
- Blocking queue

➤Load balancing

• Task scheduling

Applying to KUPE

➢Synchronization

- Define requirements
- Define Use case
- Define synchronization sequence diagram
- Define operation contracts
- Synchronization testing

Applying to KUPE

Communication

- Define Requirements
- Additional diagram to identify the communication between threads
- Integration testing
- System testing

Load balancing

- Define requirements
- Add an information to the report for analyzing the load to each thread
- Performance testing

Q&A